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---------------- ---- -------- --

FREQUENCY TRACKING WITH HISTOGRAM-PMHT 

1. INTRODUCTION 

Tracking an unknown, nonstationary signal in time and frequency against a noisy, non­
stationary background on an intensity-modulated sensor display is a difficult problem. Tradi­
tional techniques involve thresholding the sensor data and treating the exceedences as point 
measurements that are subsequently fed to a tracking algorithm. Choosing this threshold 
is a challenge in itself, and even then it is typically subject to a prescribed probability of 
detection and probability of false alarm. In reference 1, Streit derives a new tracking algo­
rithm that uses all of the senor data, and thus avoids thresholding entirely. The fundamental 
premise of this tracking algorithm is that losses due to thresholding the sensor data can be 
eliminated completely if all of the sensor data are used by the tracking algorithm. 

Section 2 describes this new tracking algorithm, referred to herein as histogram proba­
bilistic multi-hypothesis tracking, or histogram-PMHT; in particular, the key aspects of its 
derivation are discussed. A concise statement of the histogram-PMHT algorithm applied 
to frequency tracking is given in section 3. Two examples, one involving a simulated linear 
chirp, and one involving a bowhead whale call recorded at sea, are presented in section 4. A 
summary is given in section 5. 

2. HISTOGRAM-PMHT 

2.1 SIGNAL AND MEASUREMENT MODELS 

The histogram-PMHT tracking algorithm is intrinsically a multi-signal tracking algo­
rithm, and is based on a stochastic model of the signals and the noise background. It 
assumes that the signals and the noise background are described by a discrete mixture of 
continuous distributions in which the noise background and each signal are represented by 
a unique component, or set of components, in the mixture. The sensor data are indirect 
manifestations or realizations of this underlying distribution. Since in most practical appli­
cations the sensor display has a fixed resolution with a finite number of cells (e.g., discrete 
Fourier transform (DFT) bins in a time-frequency "waterfall" display), a discrete distribu­
tion is required to model the sensor data. The approach taken in histogram-PMHT is first 
to quantize the real-valued sensor data into a "pseudo-histogram," and then to use a multi­
nomial distribution to model the counts in the histogram cells. The cell-level intensities of 
the sensor data are directly proportional to the cell counts of this pseudo-histogram. The 
goal is to fit the underlying mixture distribution to this pseudo-histogram at each scan; that 
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is, to estimate the parameters of the mixture distribution that maximize the likelihood of 
the pseudo-histogram at each scan. The theoretical framework of PMHT (see reference 2) 
is used to "assign" the pseudo-histogram samples to the mixture components, and to link 
these mixture distributions across scans with a dynamical signal model. 

2.2 EXPECTATION-MAXIMIZATION 

The expectation-maximization (EM) method formalized by Dempster, Laird, and Rubin 
(see reference 3) is a powerful method for estimating the parameters of mixture distributions, 
and is the method used to solve the likelihood equation in histogram-PMHT. The method of 
EM is particularly well suited to so-called "missing" data problems; that is, problems in which 
the parameters of interest are comparatively straightforward to estimate if the observed data 
set is augmented with certain unobserved data. The basic strategy of EM is to include the 
missing data as random variables in the likelihood function, take the expectation of the log­
likelihood with respect to the missing data conditioned on the observed data, and maximize 
the resulting expression, termed the auxiliary function. The EM method requires both the 
specification of the incomplete (observed) data likelihood function, and the complete data 
(observed data plus missing data) likelihood function. The incomplete- and complete-data 
likelihood functions for histogram-PMHT are described in the next two sections. 

2.3 INCOMPLETE-DATA LIKELIHOOD FUNCTION 

Let Zt denote the sensor-data measurement vector at timet, 

Zt = { zn, ... , ZtL}, t= l, ... ,T, (2.1) 

where zu is the output of the sensor at time t in display cell f (unaveraged, short-time, 
magnitude-squared Fourier transform data versus frequency bins in this application). Let 
n2 > 0 be a specified quantization level, and let 

Nt = {nn, ... , ntL}, t = l, ... ,T, (2.2) 

denote the quantized measurement vector corresponding to Zt, where 

nu=l~~J (2.3) 

is the greatest integer less than or equal to zu/'fi2 • Let 

(2.4) 

2 

.. 



denote the total cell count (sample size) at timet. The quantized data vector Ntis used as an 
intermediate variable in the derivation of the histogram-PMHT algorithm; at an appropriate 
point in the derivation, the measurement vector Zt is recovered in the limit as 1i2 ---+ 0. 

It is assumed that the quantized data vector Nt has a multinomial distribution consisting 
of Ntr:. independent draws (with replacement) on L "categories" with probabilities 

Pl(Xt) 
f.= l, ... ,L, (2.5) 

P(Xt)' 

where 

Pt(Xt) = l f(r; Xt) dr, (2.6) 

and 

L 

P(Xt) = L Pt(Xt). (2.7) 
l=l 

In equation (2.6), f(r; Xt) is the underlying mixture density of the signals and the back­
ground noise, and Xt denotes the parameter vector of the mixture density at timet (minus 
the mixing proportions, which are implicit in all of the likelihood expressions in the sequel). 
The assumption of a multinomial distribution for the quantized data vector Nt implies that 
the counts Nt form a histogram with L cells and a sample size of Ntr:., where the samples 
are independent and identically distributed with probability density function f(r; Xt) (see 
reference 4 for more on the multinomial distribution). 

Let N = ·{ N17 ••• , Nr} denote the collection of quantized measurement vectors, and let 
X = {X1 , ... , Xr} denote the set of mixture parameters to be estimated. Assuming the 
scans are independent, the incomplete data likelihood function for N is given by 

T 

Pinc(N; X) = II Pinc(Nt; Xt), (2.8) 
t=l 

where 

(2.9) 

In reference 1, a Bayesian model for the mixture parameters X is adopted. If p;s(X) 
denotes the a priori density of X, then the incomplete data likelihood function is given by 

Pinc(N, X) = p;s(X) Pine( NIX), (2.10) 
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where the density Pinc(NIX) is essentially identical to the density (2.8), and differs only 
in its statistical interpretation (Bayesian conditioning versus parametric dependence). The 
derivation of the prior density p::;(X) is an important theoretical development in histogram­
PMHT. In short, the prior needs to be sufficiently non-diffuse so that the synthetically 
generated histogram counts N, which depend on the arbitrary quantization level n2

, do not 
overwhelm the prior as n2 

-t 0. Under the usual Markov assumption on the signal states 
Xt, Bayes Theorem gives 

T 

p=:(X) = P:::o(Xo) IT (p::;tl3t-l (XtiXt-l)]Nn", (2.11) 
t=l 

where the power of Ntr:. is necessary to account for the artificial abundance of quantized data 
Nt at each scan. 

2.4 COMPLETE-DATA LIKELIHOOD FUNCTION 

The missing data in histogram-PMHT are (1) the locations of the samples that make up 
the pseudo-histogram, and (2) their mixture component assignments, that is, the components 
in the underlying mixture distribution from which the samples are drawn. 

Let (u = { (u1 , ... , (untl} denote the locations of the samples within cell .e.. The random 
variables in (u are assumed to be independent and identically distributed with probability 
density function f(riXt)! Pt(Xt)· Furthermore, let (t = {(tl, ... , (tL} and ( = {(b ... , (T }. 

The sample density is assumed to be the mixture density 

M 

f(riXt) = L 7rtk Gk(riXt), (2.12) 
k=O 

where the mixing proportions 'fftk ~ 0 for all t and k, L~o 7rtk = 1 for all t, and the Gk(riXt) 
are themselves probability density functions. For component 7rta G0 (r1Xt), 7rto represents the 
fraction of the total power due to the background noise, and G0(riXt) models the cell-to-cell 
variation of the background noise. Likewise, for components 1rt1 G1 (riXt), ... , 'fftM G M(riXt), 
'fftk is the fraction of the total power due to signal k, and Gk(riXt) models the variation of 
signal k from cell to cell. The mixture model (2.12) assumes that the signal power levels 
may be spread across more than one cell of the sensor display. 

Let Ku = {ku1, ... , kuntl} denote the components of the mixture that generated the 
missing variables (u = { (tl!l, ... , (untl}. It is assumed that the random variables in Ku 
are independent and identically distributed. Furthermore, let Kt = {Ktl, ... , KtL} and 
K = {Kb ... ,KT}· 
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Including the missing sample locations and their mixture component assignments, the 
complete data likelihood function is given by 

T L nu 

Pcom(N, (, K, X)= P=:(X) II IIII fkur((uriXt), (2.13) 
t=1l=1 r=1 

where 

(2.14) 

that is, the complete data likelihood function is the product of all the histogram sample den­
sities across all L cells and all T scans, scaled by the prior for the signal mixture parameters. 

2.5 E-STEP 

The auxiliary function of the EM method, denoted here by \lf, is defined as the conditional 
expectation with respect to the missing data of the logarithm of the complete data likelihood 
function given the observed data and the current values of the parameters X, denoted X': 

w(X, X')= E<;.K[Iogpcom(N, (, K, X) IN, X'], (2.15) 

where E<;.K denotes expectation with respect to the missing data. The mechanics of the 
E-step for histogram-PMHT are tedious but straightforward, and are well documented in 
reference 1. The final result in terms of the pseudo-histogram counts N is 

T 

\lf(X, X')= logP=;0 (Xo) + L :(;,) logp:;1i=:1_ 1 (XtiXt-1) 

t=1 t 
T L M 

+ ~tt~ P,(~D /,J,(riXD logf'(riX,)dr. {2.16) 

It is easily shown that by taking the limit 

wtt = lim 1i2 w, 
1i2-+0 

(2.17) 

and using definition (2.3) for the quantization, the EM auxiliary function w can be replaced 
by wtt, a function of the unquantized sensor data Z = {Zr, ... , Zt}: 

T 

tt( ') -" IIZtll I - - (X IX ) 'l1 X, X - L- P(X') ogp.::.tl.::.t-1 t t-1 
t=1 t 

T L M 

+ ~ ~~ Pt~~D l fk(TjX;) Iogfk(TiXt) dr, (2.18) 

where IIZtll = Ef=1 zu is the L1-norm of Zt. 
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2.6 M-STEP 

The objective of the M-step is to maximize the auxiliary function wu with respect to 
the unknown signal parameters X. To proceed, application-specific terms in the auxiliary 
function (2.18) must be defined. 

Let 

t = 0, 1, . .. ,T, (2.19) 

where Xto is the background noise parameter at time t, and Xtk is the parameter of signal k 
at timet. Assuming the signals are independent at all times, 

M 

.PstiEt-t(XtiXt-1) = IJP:::u,IEt-t,k(XtkiXt-l,k)· 
k=O 

(2.20) 

It is readily shown that wU can be separated into two terms, one involving the unknown 
mixing proportions 1r = {7rtk}, and one involving the unknown signal parameters X, 

T M 

wu = L:wt'IT + L:wkx, (2.21) 
t=l k=O 

where 

(2.22) 

and 

The updated mixing proportions 1ft are easily obtained at each time t by maximizing with 
respect to 1ft the Lagrangian equation involving Wt'IT and the constraint 7rto+7rn +· · ·+7rtM = 1. 

For this application, linear Gauss-Markov processes are assumed for the signals, so that 
for k = 1, ... , Mandt= 1, ... , T, the signal process models are given by 

(2.24) 
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where N(r; J.l, C) denotes the multivariate normal probability density function with mean 
J.l and covariance matrix C, the Ft-1,k are known state transition matrices, and the Qtk are 
known process covariance matrices. 

Additionally, it is assumed that the signal components in the mixture distribution are 
also Gaussian, and that the means of these Gaussians are linearly related to the states of 
the signals k = 1, ... , Mat times t = 1, ... , T, so that 

(2.25) 

where the Htk are known measurement matrices, and the Rue are known measurement co­
variance matrices. 

Finally, the background noise distribution in this application is assumed to be uniform 
and known for all t, so that the G0(rixto) terms are all constants. 

With these assumptions, it is shown in reference 1 that for X(k) = {xok, xlk, ... , xTk}, 
the value of X(k) that maximizes the auxiliary function Wkx for each signal k is the solution 
to a symmetric, block-tridiagonal, linear system of equations, and that this system is most 
efficiently solved by a recursive Kalman smoothing filter. The details of this result are 
omitted here, but the filter steps are listed explicitly in the next section. 

3. FREQUENCY TRACKER ALGORITHM STATEMENT 

In the case of frequency tracking, the signal parameters of interest are typically instan­
taneous frequency 'Yt and instantaneous frequency-rate 7t at time t, so that for signal k, 

Xtk = [?tk] . 
'Ytk 

(3.2) 

For this two-state linear Markov model, the state transition matrices Ft.:..1,k and the process 
covariance matrices Qt-1,k have simple forms: 

[
1 ~t-1] Ft-1,k = O 1 , 

where ~t is the elapsed time between time t and time t - 1, and 

Qt-1,k = qt-1,k 
[ 

1 A 3 
3L.l.t-1 

1A2 
2L.l.t-1 

where the qt-1,k are scale factors (see reference 5). 
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For a two-dimensional time-frequency display, the measurement matrices Htk and the 
measurement covariance matrices Rtk also have simple forms: 

and 

Htk = [1 o], 

R - 2 
tk- Ptk' 

where P~k is the variance of signal k at time t. 

(3.5) 

(3.6) 

Let {rr~)} be the set of estimated mixing proportions and {x~~} the set of estimated 
signal states at the i-th EM iteration. At the beginning of the algorithm (the 0-th iteration), 
the mixing proportions { 1r~Z)} are initialized so that 1r~Z) > 0 and 1r~g) + 1r~~) + · · · + 1r~~ = 1 
fort= 1, ... , T. The signal state sequences {x~~, x~~, ... , x~2} are initialized with nominal 
values for t = 1, ... , T. For iterations i = 0, 1, 2, ... , the following nine quantities are 
computed: 

1. Component bin probabilities fort= 1, ... , T, f = 1, ... , L, and k = 0, 1, ... , M: 

P{i+l) _ {1/ L, . 
tkl - {i) 

ftN(T; Htk xtk, Rtk) dT, 
k =0, 

k=1, ... ,M. 

2. Total bin probabilities for t = 1, ... , T and f = 1, ... , L: 

M 

P (i+l) - "'"" {i) p{i+l) 
tl - L....J 7rtk tkl . 

k=O 

3. Total scan probabilities for t = 1, ... , T: 

L 

P {i+l) - "'""p{i+l) 
t -L....Ju · 

l=l 

4. Bin centroids fort= 1, ... , T, f = 1, ... , L, and k = 1, ... , M: 

-{i+l) 1 [ N( rr {i) R ) d 
Ztkl = (i+l) 'T T; lltk Xtk ' tk 'T. 

ptkl l 

5. Synthetic measurements for t = 1, ... , T and k = 1, ... , M: 

"'L [ (p(i+l)jp(i+l))] -{i+l) 
-{i+l) L.Ji=l Ztl tkl tl Ztkl 
z =----~~~~------~~~--

tk E;=l [ zu ( Pt<,!il) I P3+l))] 
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6. Synthetic measurement covariance matrices fort= 1, ... , T and k = 1, ... , M: 

ff_(i+l) = Rtk . 
tk 1f~~ 2:;=1 zt+l) ( Pt~il) I p~+l)) 

7. Synthetic process covariance matrices fort= 0, 1, ... , T- 1 and k = 1, ... , M: 

Q
-(i+l)- pp+l) Q 

tk - IIZtll tk· 

8. Estimated mixing proportions fort= 1, ... , T and k = 0, 1, ... , M: 

(i) "'L (i+l) (p(i+l)jp(i+l)) 
(i+l) 1ftk Lti=l Zu tki tL 

1ftk = "'M (i) "L ( (i+l)/ (i+l)) . 
L.Jk'=l 1ftk' L.Ji=l Ptk'i Pu 

(3.12) 

(3.13) 

(3.14) 

9. Estimated signal states fort= 0, 1, ... , T and k = 1, ... , M, using (for computational 
efficiency) a recursive Kalman smoothing filter, which comprises a forward filter ini-
tialized at time t = 0 with y~~cil) ( k) = x~~ and a large (diffuse) state covariance matrix 

P~t: 1)(k), and given, fort= 0, 1, ... , T- 1, by the recursions 

p(i+l)(k) 
t+llt Ftk Pt~~+l) ( k) Ft~ + Qtk, 

w(i+l)(k) 
t+l - p(i+l) (k) H* [H p(i+l) (k) H* D ] -l 

t+llt t+l,k t+l,k t+llt t+l,k + .LLt;+l,k ' 

(i+l) ( ) 
pt+llt+l k - (i+l) ( ) (i+l) (k) H p(i+l) (k) 

Pt+llt k - wt+l t+l,k t+llt , 

-(i+l) (k) 
yt+llt+l - r;'t -(i+l)(k) w:(i+l)(k) [-(i+l) H D -(i+l)(k)] 

I'tk Ytit + t+l zt+l,k - t+l,k I'tk Yt!t , 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

and a backward filter initialized at timet = T with x~tl) = y~~1)(k) and given, for 
t = T- 1, T- 2, ... , 1, by the recursion 

(i+l) - -(i+l) (k) + p(i+l) (k) F* (p(i+l) (k)) -1 [ (i+l) - F. -(i+l) (k)] 
xtk - Ytit tit tk t+llt xt+l,k tk Yt!t ' (3.19) 

and, for t = 0, by 

(i+l) - F.-1 (i+l) 
Xok - ok xlk ' (3.20) 

where the asterisk denotes matrix transposition. 

The most common convergence tests for termination of the algorithm are based on the 
rate of increase of the incomplete data likelihood function. Other tests are based on the rate 
of change of the estimated parameters. In practice, usually some combination of these two 
tests is used. 
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4. EXAMPLES 

4.1 LINEAR CHIRP 

In this section, a two-state histogram-PMHT frequency tracker is used to track the in­
stantaneous frequency and frequency-rate of a low-frequency linear chirp. 

Consider the continuous-time, complex-sinusoidal signal x(t) with constant amplitude A, 
constant phase ¢>, and time-varying instantaneous frequency 1(t), 

x(t) = A exp(i 27r')'(t) t + i ¢>], (4.2) 

where 

'f'(t) = ')'o + i'o t, (4.3) 

'Yo is the nominal frequency in Hz, and i'o is the chirp-rate in Hzfs. Converting to radians, 
equations ( 4.2) and ( 4.3) are rewritten as 

x(t) = A exp[i O(t) t + i ¢>], (4.4) 

and 

(4.5) 

where n(t) is the instantaneous frequency in rad/s, no is the nominal frequency in rad/s, 
and no is the chirp-rate in rad/s2 . 

Without loss of generality, it is assumed that the signal is observed starting at timet= 0, 
and that estimates of the instantaneous frequency and frequency-rate of x(t) are required 
every T seconds. To avoid aliasing, the signal is sampled well above the Nyquist rate for the 
observation period of interest ST, where S is the number of scans; that is 

27r 
Os = Ts » 2 O(ST), (4.6) 

where 0 8 is the sampling rate in rad/s, and Ts is the sampling period in seconds. Using n to 
denote the sampling index, the discrete-time versions of equations (4.4) and (4.5) are given 
by 

and 

x(nTs) - Aexp[iD(nTs)nTs+i¢>] 
x[n] - Aexp(iw[n]n+i¢>), 

Ts D(nTs) - Ts Do+ Ts no nTs 
w[n] - wo +won, 
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for n = 0, ... , N- 1, where w[n] is the instantaneous frequency in rad/sample, w0 is the 
nominal frequency in rad/sample, and w0 is the chirp-rate in rad/sample2 (see reference 6 
for details on time-sampling). 

For simplicity, it is assumed that the signal x(t) is corrupted by additive, complex, zero­
mean white Gaussian noise with variance CJ2, denoted v(t) "' CN(O, CJ2); that is, the observed 
time-series is given by 

y[n] = x[n] + v[n], 

where 

E{v[n]} - 0, 

E{ v[n] v[n + k]} - CJ
2 c5[k], 

(4.9) 

(4.10) 

(4.11) 

for all n and k. An observation interval of length T seconds and a sampling period of length 
Ts seconds yields a time-series of length T /Ts + 1 samples every T seconds, for a total of 
N = S(T/Ts + 1) samples. 

For each observation interval, the signal-to-noise ratio (SNR) TJ is defined as the ratio of 
the average signal power P to the total noise power CJ2 , 

(4.12) 

For the signal of interest, the average signal power P = A2
, so TJ = A2 

jCJ
2

• 

In these simulation examples, a low-frequency linear chirp with amplitude A= 1, phase 
¢J = 0, nominal frequency 'Yo = 20 Hz, and chirp-rate 'Yo = 0.125 Hz/s is sampled every 
Ts = 0.0125 second, and its short-time Fourier transform (STFT) is taken every T = 1 
second for S = 120 consecutive, nonoverlapping (unaveraged) blocks of data (scans) to 
yield a spectrogram of length ST = 2 minutes. This sampling period corresponds to a 
sampling rate of 'Ys = 1/Ts = 80 Hz, which is well above the Nyquist rate of 2 "-y(ST) = 
2 (r0 + ..Yo(ST)] = 70 Hz for the 2-minute observation period. Each 1-second observation 
interval yields T /Ts + 1 = 81 samples, for a total of N = 9720 samples over the whole data 
s~. . 

The spectrogram of the noise-free (a= 0) signal is shown in figure 1. The spectrograms 
for signals with a= A (0 dB), 3A (-9.5424 dB), 5A (-13.9794 dB), and 6A (-15.5630 dB) are 
shown in figures 3, 5, 7, and 9, respectively. 

The STFTs in these examples are computed using a 128-point fast Fourier transform 
· (FFT) and an 81-point Hanning window. The window sequence is normalized such that it 
sums to one; this scaling allows the magnitude-squared FFT output to be directly interpreted 
as power. Since for aP-point DFT the spacing between DFT frequencies is 27r/P, and the 
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relationship between the discrete-time frequency w and the continuous-time frequency n is 
w = nrs, where Ts is the sampling period, the frequency resolution is given by 271" I PTa rad/s, 
so the DFT bin-width for this example is 1/(128 x 0.0125) = 0.625 Hz. Only the positive 
half of the spectrum is shown in figure 1, and only the first L = 64 bins of sensor data are 
considered in the sequel. 

The effect of the window is to smear the signal in time and frequency, and hence add to 
the apparent bandwidth of the signal induced by the spectral sampling. While windowing 
decreases the resolution of the spectrogram, it would seem to improve the fit of the mixture 
model to the data in this case-the broadening effect of the window adds ''variance" to the 
signal. Although this smearing of the signal by the window is a purely deterministic effect, 
it is treated as a stochastic effect by the histogram-PMHT tracker; that is, the width of the 
signal is modeled by the variance of the signal component of the mixture. 

The histogram-PMHT frequency tracker outlined in section 3 was implemented as a 
single-scan (T = 1), single-signal (M = 1) sequential filter and was applied to the data in 
figures 1, 3, 5, 7, and 9, on a per-scan basis; that is, the scans were processed sequentially, 
where the estimate for the previous scan was used to initialize the estimate for the current 
scan (see reference 1). The values used for qt-l = q and Pt = p in equations (3.4) and (3.6) 
are listed in the figure captions. 

The estimated instantaneous frequencies are shown connected by a solid line in each 
figure. The tracks become increasingly jagged as the SNR drops and the signal power varies 
more from cell to cell. The jaggedness of the tracks is also a function of the process noise: the 
stochastic signal model allows for further excursions from the deterministic, constant-rate 
model as the process noise scale factor q is increased, resulting in larger random accelerations. 
There is an intimate relationship between the values of the filter parameters p and q, the SNR, 
the track initialization, and the tracker behavior. High SNR signals will tend to draw the 
signal component of the mixture closer if the signal is within the effective "gate" determined 
by p. The amount by which the signal component will move to data outside the range of 
the deterministic process model depends on the SNR, the value of q, and the track's local 
estimate of its own quality (i.e., the size of the state covariance Ptlt on Xt)· In low SNR, the 
"inertia" of the tracker will allow it to coast according to the deterministic process model 
until there is good reason (i.e., supporting data) for it to change course. 

The track in figure 9 was terminated prematurely because it had lost track. Because the 
nearest peak in the second scan of data is far to the left of where the track was initialized 
(at 21.875 Hz, the right edge of bin 35), a large innovation was generated in the filter, which 
led to a large negative frequency-rate estimate from which the tracker never recovered. In 
the absence of consistently strong data, the tracker coasted according to its current rate 
estimate, with minor course corrections in the vicinity of strong local peaks. This example 
is a good example of where a multi-scan batch filter would be beneficial. A batch of, say, 
10 scans in this example would probably provide enough smoothing for an acceptable initial 
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track estimate. The batch estimate could then be used to either initialize the next batch, 
slid forward by one scan, or to initialize a single-scan sequential tracker like the one used in 
these examples. 

Plots of the instantaneous frequency and frequency-rate estimates for these examples, 
along with the true frequencies and frequency-rate, are shown in figures 2, 4, 6, and 8. 
The apparent small (less than one bin-width) bias in the frequency estimates is thought 
to be due more to a combination of the resolution of the STFT, and the known bias of 
the windowed periodogram (see reference 6), than to the tracker. The histogram-PMHT 
tracker is a maximum likelihood estimator, and should therefore be asymptotically unbiased, 
efficient, and normal. A detailed statistical analysis of histogram-PMHT performance has 
not yet been done, and is left for future work. 
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Figure 1.. Magnitude-Squared STFT of Noise-Free Linear Chirp (TJ = oo dB, 
p = 1 Bin (0.625 Hz), q = 1 X w-s) and Estimated Track 
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Figure 3. Magnitude-Squared STFT of Linear Chirp in White Gaussian Noise 
(Tl = 0 dB, p = 1 Bin {0. 625 Hz), q = 1 X w-s) and Estimated Track 
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Figure 5. Magnitude-Squared STFT of Linear Chirp in White Gaussian Noise 
("7 = -9.5424 dB, p = 1 Bin {0.625 Hz), q = 1 x 10-5 ) and Estimated Track 
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Figure 7. Magnitude-Squared STFT of Linear Chirp in White Gaussian Noise 
(17 = -13.9794 dB, p = 1 Bin {0. 625 Hz), q = 1 x 10-3 ) and Estimated Track 
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4.2 BOWHEAD WHALE CALL 

The spectrogram of a 1.2-second bowhead whale call recorded at sea is shown in figure 
10. This signal was sampled at 2500 Hz and processed with a 421-point Chebyshev window 
and a 1024-point FFT with a bin resolution of 2.4414 Hz. Values of p = 3 bins (7.3242 Hz) 
and q = 1 x 10-3 were used to track this signal. The estimated instantaneous frequencies 
are shown connected by a solid line in figure 10. 

The intent of this example is to show the ability of the tracker to track very complex, non­
stationary signals, and the ability of the stochastic process model to accommodate dynamics 
of higher order than the deterministic process model. The benefit of including process noise 
is the ability to track high dynamics with a reduced parameter set. However, for too low a 
model order, the burden of tracking the signal dynamics falls squarely on the shoulders of 
the process noise, and the result for high process noise may be very jagged tracks or, for low 
processes noise, tracks whose dynamics lag those of the actual track. The appropriate model 
order and process noise level are of course application dependent. 

5. CONCLUDING REMARKS 

The histogram-PMHT tracking methodology avoids the thorny issues of thresholding the 
sensor data to provide measurements for a point tracker by (1) using all of the sensor data, 
and (2) modeling the signals as potentially distributed over several cells. The histogram­
PMHT signal model is a stochastic model in that the signal centers are modeled as the 
component means of a discrete mixture distribution; the signal "bandwidths" are modeled 
by the variances of the mixture components. 

The interpretation of the sensor output as a pseudo-histogram plays an important role in 
the derivation of histogram-PMHT. The real-valued cell outputs are quantized and treated 
as the cell counts of a pseudo-histogram whose distribution is multinomial; the underlying 
density of this multinomial distribution is the mixture density of the signals and the back­
ground noise. It is a remarkable fact that the sensor data are recovered in the algorithm as 
the quantization level n? is taken to zero. 

Several extensions to histogram-PMHT exist, and some of these are developed in refer­
ence 1. For instance, the measurement covariance matrices Rtk and the process covariance 
matrices Qtk can be treated as unknowns and estimated from the data. Also, some of the 
unknowns can be linked together parametrically or held fixed, if either option makes sense 
in the application. For example~ the process covariance matrices Qtk and the mixing propor­
tions 1ftk can be held constant for each signal over all scans such that Qtk = Qk and 1ftk = 7rk 

for all t and k. 
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Figure 10. Spectrogram of Bowhead Whale Call 
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Another important theoretical development in the derivation of histogram-PMHT not 
discussed in this paper is the use of a negative multinomial distribution (see reference 4) to 
model sensor cells in which no data are collected. The negative multinomial functions as an 
interpolator in this case, serving to restore the missing cell counts in the pseudo-histogram. 
In this capacity, the negative multinomial may be useful to reduce "edge effects" that may 
bias estimates when the tails of signal components extend beyond the ends of the sensor 
display. The reader is referred to reference 1 for further details on the use of the negative 
multinomial in histogram-PMHT. 
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